翻訳と辞書
Words near each other
・ Gas Cap Law
・ Gas carrier
・ Gas centrifuge
・ Gas chamber
・ Gas Chamber (album)
・ Gas chamber (disambiguation)
・ Gas Chamber Orchestra
・ Gas Chambers
・ Gas check
・ Gas check (disambiguation)
・ Gas chromatography
・ Gas chromatography ion detector
・ Gas chromatography–mass spectrometry
・ Gas City, Indiana
・ Gas City, Ltd.
Gas cluster ion beam
・ Gas collecting tube
・ Gas combustion retort process
・ Gas Company Tower
・ Gas composition
・ Gas compressor
・ Gas constant
・ Gas contractor
・ Gas Control Equipment Ltd
・ Gas core reactor rocket
・ Gas cracker
・ Gas cylinder
・ Gas depletion
・ Gas detector
・ Gas diffusion electrode


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gas cluster ion beam : ウィキペディア英語版
Gas cluster ion beam
Gas Cluster Ion Beams (GCIB) is a new technology for nano-scale modification of surfaces. It can smooth a wide variety of surface material types to within an angstrom of roughness without subsurface damage. It is also used to chemically alter surfaces through infusion or deposition.
==Process==
Using GCIB a surface is bombarded by a beam of high energy nanoscale cluster ions. The clusters are formed when a high pressure gas (approximately 10 atmospheres pressure) expands into a vacuum (1e-5 atmospheres). The gas expands adiabatically and cools then condenses into clusters. The clusters are nano sized bits of crystalline matter with unique properties intermediate between the realms of atomic physics and those of solid state physics. The expansion takes place inside of a nozzle that shapes the gas flow and facilitates the formation of a jet of clusters. The jet of clusters passes through differential pumping apertures into a region of high vacuum (1e-8 atmospheres) where the clusters are ionized by collisions with energetic electrons. The ionized clusters are accelerated electrostatically to very high velocities, and are focused into a tight beam.
The GCIB beam is then used to treat a surface—typically the treated substrate is mechanically scanned in the beam to allow uniform irradiation of the surface. Argon is a commonly used gas in GCIB treatments because it is chemically inert and inexpensive. Argon forms clusters readily, the atoms in the cluster are bound together with Van der Waals forces. Typical parameters for a high energy Argon GCIB are(): average cluster size 10,000 atoms, average cluster charge +3, average cluster energy 65 keV, average cluster velocity 6.5 km/s, with a total electrical current of 200 µA or more. When an Argon cluster with these parameters strikes a surface, a shallow crater is formed with a diameter of approximately 20 nm and a depth of 10 nm. When imaged using Atomic Force Microscopy (AFM) the craters have an appearance much like craters on planetary bodies(). A typical GCIB surface treatment allows every point on the surface to be struck by many cluster ions, resulting in smoothing of surface irregularities.
Lower energy GCIB treatments can be used to further smooth the surface, and GCIB can be used to produce an atomic level smoothness on both planar and nonplanar surfaces. Almost any gas can be used for GCIB, and there are many more uses for chemically reactive clusters such as for doping semiconductors (using B2H6 gas), cleaning and etching (using NF3 gas), and for depositing chemical layers.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gas cluster ion beam」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.